If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3v^2-4v=0
a = 3; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·3·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*3}=\frac{0}{6} =0 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*3}=\frac{8}{6} =1+1/3 $
| 44=9q-1 | | 18-3x=5x-2 | | 18-3x=5x=2 | | (3x)/(-6+10)=0 | | 7x+12+3x=5x+6x+7 | | (-1(2-x))/2=(3x-5)/3 | | -1(2-x)/2=3x-5/3 | | X^3+2x^2-7x-24=0 | | X^3+2x^2-7x=24 | | 88=11y+33 | | 8x+-8=22-2x | | 8x-8=22-2x | | 38b=4(4b-1)-94 | | 9=7x-14 | | 120+x/50=240 | | 11x=4.8 | | X-2-2x-1-3=0 | | 0=6/5*4-11x | | 2-3(2x+2)=5-4x^2 | | -7c=27-4c | | 11-3b=8b | | (3a-4)=(2a-5) | | 7x-5=18.1 | | 7y+10=59 | | 5x+75=2(-37.5) | | 8z-3z=30 | | (0.18x+52)+(0.07x+61)=180 | | 0.18x+52=70 | | 0.18x+52=60 | | 0.18x+52=0.07x+61 | | 10x^2-4x+1=0 | | x-30=0.5x |